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FATIGUE OF CONTINUOUS FIBER REINFORCED

METALLIC MATERIALS

W.S. JOHNSON, M. MIRDAMADI AND J. G. BAKUCKAS, JR. 1

The complex damage mechanisms that occur in fiber reinforced advanced
metallic materials are discussed. As examples, results for several lay-ups of
SCS-6/Ti-15-3 composites are presented. Fatigue tests were conducted and

analyzed for both notched and unnotched specimens at room and elevated
temperatures. Test conditions included isothermal, non-isothermal and
simulated mission profile thermomechanical fatigue. Test results indicated
that the stress in the 0 _' fibers is the controlling factor in fatigue life for a
given test condition. An effective strain approach is presented for predicting
crack initiation at notches. Fiber bridging models were applied to crack

growth behavior.

INTRODUCTION

Advanced materials are needed to meet the high temperature, low weight requirements
established for advanced aircraft propulsion systems and high speed airframes. One class of
advanced material is continuous fiber reinforced titanium matrix composites (TMC's). These

materials are currentl), being considered as structural materials for high temperature
applications where weight saving is a premium. Stresses are induced in the composite
constituents due to temperature change because of the coefficient of thermal expansion
mismatch between the fiber and matrix materials. This, coupled with the different strengths
and failure modes of the fiber, matrix and fiber/matrix interface, contributes to a very

complex problem in predicting and tracking damage initiation and progression in TMC's.
Structures built of these materials must satisfy durability and damage tolerance requirements

just as any other man-rated aircraft structure. Further, these high temperature structural
applications will require that the response of the material to thermomechanical loading be
well understood and predictable. This paper will discuss the durability and damag.e tolerance
problems associated with predicting crack initiation and damage growth m notched
specimens. In addition, examples of predicted and measured unnotched material response
under in-phase and out-of-phase thermomechanical fatigue and simulated mission profile

testing will be presented and discussed.

MATERIALS AND TESTING TECHNIQUES

Ti-15-3, a shortened designation for Ti-15V-3Cr-3A1-3Sn, is a metastable beta strip alloy
used where cold formability and high strength are desired (1). The composite laminates were

made by hot-pressing Ti-15-3 foils between unidirectional tapes of silicon-carbide fibers.
These fibers are designated SCS-6 by Textron Specialty Materials, the producer. The fiber
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diameter is 0.142 mm and the fiber is assumed to have isotropic properties with a modulus of

400 GPa. Panels, fabricated by Textron Specialty Materials, of each of the following lay-ups
were tested" t0l^. [0./+45]. [0/90]., [0/90/0] and [0/+45/90]_ The fiber volume

• • L J_, _- m • LS t* - " _;. " "

fractions ranged from 3_.5 to _9%. A panel of fiberless composite was made identically
to the composite but without placing the fiber mats between the foils during fabrication. This
resulted in a panel of the matrix material that had seen the same thermal and mechanical
history during fabrication as the matrix in the composite.

The tests were conducted at NASA Langley Research Center, unless otherwise noted,

on an 89 kN servohydraulic test stand. For all composite tests load control was used with a
loading rate of approximately 0.89 kN/second for the quasi-static tests and a cyclic frequency
of 10 Hz and an R=0.1 for the fatigue tests. Static and fatigue tests of the matrix material
were conducted in strain control. Tests were also conducted to determine the rate- and

temperature-dependent properties of the matrix material. These tests were conducted using
several loading rates and temperatures and under both strain and load control• For room
temperature tests, an extensometer with a 25.4-mm gage length was attached to the edge of
the specimens to record strain. For the elevated temperature tests, a water cooled, quartz rod
extensometer with a 25.4-mm gage length was used. The specimens were heated using a
5kW induction heater with copper coils. During thermomechanical fatigue testing the

induction heater and gaseous nitrogen were used in unison to achieve the required cooling
rates. The temperature distribution over the gage length was controlled to within + 10°C

over a 50 mm gage section.

FATIGUE OF UNNOTCHED SPECIMENS

Fatigue damage in unnotched TMC composites was found to be quite dispersed (no single
dominant crack) so the overall stiffness and strength of the bulk material were degraded with

cycling. The presented work first describes fatigue damage mechanisms at room temperature
and at elevated temperature. Next, work analyzing in-phase and out-of-phase
thermomechanical fatigue is reviewed. Lastly, material response to a generic hypersonic
loading profile is discussed.

Fatigue at Room Temperature

S-N data was experimentally determined at room temperature (RT) for four different
lay-ups containing 0 ° plies (2)• The stress-strain response was monitored during the fatigue
life. The laminates containing off-axis plies lost stiffness very early in the cycling history
due to the fiber/matrix interface failure. After a few cycles, the stiffness stabilized and the
cyclic strain range was recorded. This stabilized strain range was multiplied by the fiber
modulus (400 GPa) to determine the cyclic stress range in the 0 ° fiber. Since the laminate
will not fail until the 0 ° fiber fails, it is reasonable to assume that the stress in the 0 ° fiber

will dictate fatigue life. A plot of the 0 ° fiber cyclic stress range against life for the four
laminates is shown in Figure 1. The fatigue data from the four different lay-ups were
correlated well by the 0 ° fiber stress range.

Also plotted in Figure 1 is the strain-controlled fatigue life of the Ti-15-3 matrix

material (i.e., the "fiberless" composite). Comparing the fatigu-e llfe in terms of the strain

range of the t9° fibers tO that of t-h-e matrix, it ap_th_-i'_-the same Cyclic_tr_u_n range the

fibers would fail first. This was confirmed by examining failure surfaces of fatigued

laminates. There was no evidence of significant matrix cracking except in one [0]8 specimen



that was cycled at an applied laminate stress of 690 MPa and broke at 516,000 cycles (2).
This test is shown as a run-out data point in Figure 1. This specimen had such a long life that

the matrix curve may well have intersected the fiber failure curve. Thus, knowledge of the

fatigue behavior of the constituents is useful for the prediction and interpretation of the

composite fatigue response. The constituent fatigue behavior will provide insight into whether
the matrix or the fiber fail first for a given applied cyclic stress. This is especially true for 0°

laminates that are not complicated by fiber/matrix debonding in the off-axis plies.

Fatigue at High Temperature

Unnotched fatigue tests were conducted at 650°C on the four SCS-6/Ti-15-3 laminates
tested at room temperature and the results are reported in detail by Pollock and Johnson (3).
Figure 2 compares the maximum strain versus cycles to failure of a unidirectional composite
to the maximum strain versus cycles to failure of the Ti-15-3 matrix material loaded in strain
control (3). The fatigue test of the unidirectional specimen was considered to be an in-situ
fatigue test of the fibers. For high maximum strains (short lives) the initial damage
developed in the fibers and the composite had a shorter life than the matrix alone. For low
maximum strains (long lives) the initial damage developed in the matrix. Where the two
curves intersect, both the matrix and the fibers were equally likely to develop fa!igue
damage. Figure 3 shows three polished surfaces taken at locations away from the specimen
fracture surface for unidirectional specimens with short, medium and long lives. The high
stress, short life specimen exhibits many fiber breaks but no significant matrix cracking (the
lines visible in the matrix are grain boundaries). The medium life specimen has both fiber
breaks and some short matrix cracks. The low stress, long life specimen exhibits no fiber
breaks but several long matrix cracks. Therefore, it is reasonable to use the fatigue response
of the matrix material and the in-situ 0° fiber to predict the strain levels at which fiber failure
will precede matrix cracking and at which matrix cracking will precede fiber failure in the
composite.

Thermomechanical Fatigue

Both thermal and mechanical stresses are developed in the constituents of a laminate
during thermomechanical fatigue (TMF). Since constituent stresses are not necessarily
related to the measurable laminate strains, an analytical tool is needed to calculate the
constituent and laminate behavior of arbitrary lay-ups subjected to arbitrary combinations of
mechanical and thermal loading. The VISCOPLY program, developed by NASA Langley, is
a micromechanics analysis (4) based on constituent properties. The program uses the
vanishing fiber diameter (VFD) constitutive model (5) to calculate the orthotropic properties
of the plies.

The VISCOPLY program was used to predict the laminate response of unidirectional
SCS-6/Ti-15-3 composites (4). Neat Ti-15-3 matrix material was tested to determine the
required thermo-viscoplastic material constants. The fatigue behavior as a function of
maximum applied stress for in-phase and out-of-phase TMF is shown in Figure 4 These tests
were conducted at NASA Lewis. The in-phase loadings produced earlier failures compared
to the out-of-phase but the specimens 10st very little stiffness prior to failure. On the other
hand, the out-of-phase loadings resulted in significant stiffness losses due to matrix cracking
prior to failure. The V1SCOPLY program was used to predict the fiber and matrix stresses
during the in-phase and an out-of-phase TMF cycle between 93-538°C and 45-896 MPa (6).
The fiber stresses are predicted to be highest for the in-phase test, explaining the earlier
laminate fatigue failures. Additionally, the predicted matrix stresses were higher for the out-
of-phase loadings, thus explaining the earlier matrix cracking and the resulting stiffness loss



measured in ref. 6 during the out-of-phase loadings. When each test shown in Figure 4 was
analyzed and the 0 ° fiber stress range was plotted versus the number of cycles to failure, the
in-phase and out-of-phase data collapsed into the narrow band labeled TMF in Figure 5.

Other TMF and isothermal data were anal_,zed and are plotted in Figure 5 (4).
Within a given test condition, i.e., temperature, loading frequency, time at temperature, etc.,
the 0 ° fiber stress range seems to correlate with the number of cycles to failure. However, as
the test conditions change the fatigue behavior of the 0 ° fiber appears to change. Since
Figure 5 shows only the stress range in the fiber, the increased loading of the fiber due to
matrix stress relaxation is not accounted for. Higher temperatures and slower cycling would
both contribute to more load being shifted to the fiber from the matrix. Additional time at

temperature could also cause additional fiber/matrix interface reactions that could effect the
mechanical behavior (7,8).

Generic Hypersonic Mission Profiles

Mirdamadi and Johnson (9) studied the material response of SCS-6/Ti-15-3 [0/90]_s

laminates subjected to a generic hypersonic mission profile. The profile is shown as the
insert in Figure 6. The maximum applied temperature was 600 C and maximum applied
load was 420 MPa. The stress-strain response of the fifth cycle of the mission profile is

shown in Figure 6. The VISCOPLY predictions are also shown in the figure. There is
excellent agreement between the predicted and measured stress strain response. The
prediction was modified empirically to account for the fiber/matrix interface failure and the
corresponding reduction in the laminate modulus. The modification procedure, based on
isothermal tests, is described in ref. 9. The fiber and matrix stresses under the mission

profile loading can now be predicted and related to the constituent fatigue response. An
example of the 0 ° fiber stress as a function of time is shown in Figure 7. If the total strain
range of the laminate measured during the mission profile cycling (approx. 0.0057 from
Figure 6) was multiplied by the average fiber modulus over the temperature range in question
(approx. 385 GPa), a fiber stress range of 2195 MPa would be calculated. This approach
was used to determine the fiber stress range at room temperature in Figure 1. However, the

fiber stress range shown in Figure 7 predicted using VISCOPLY is approximately 1590 MPa,
much lower than that calculated from the overall strain range. This clearly illustrates that the
stress in the constituents under TMF loading conditions cannot be directly measured, but

must be calculated analytically.

The physical basis for predicting the fatigue life of TMC's under complicated TMF

loading is still not fully developed. Perhaps the total stress range in the 0 ° fiber is the answer
as discussed earlier for simpler loading cases. Or perhaps a linear life fracti_on model may be

applicable (a Miner's Rule approach based on both fiber and matrix damage) as suggested by
Russ, Nicholas and Mall (10).

FATIGUE OF NOTCHED SPECIMENS

Damage initiation and growth near local stress concentrations in TMC's is a complex process
(11). Under conditions where fibers do not break, damage consists primarily of matrix
cracking and fiber/matrix debonding. This phenomena is referred to as fiber bridging.
Although the fibers are intact, matrix cracking andfiber/matrix debond]ng significantly
reduce both the stiffness and strength in TMC's (12). Thus both damage initiation and

growth are vital issues that must be addressed and understood in order to apply an
appropriate design philosophy. In the following sections, a methodology to predict matrix
crack initiation is outlined and a fiber bridging model characterization of matrix crack growth

¢,



is reviewed.

Fatigue Crack Initiation

Hillberry and Johnson (13) developed a methodology to predict the initiation of
matrix cracking in notched TMC's based on the Smith-Watson-Topper effective strain

parameter (14). Hillberry and Johnson modified the Smith-Watson-Topper effective strain
parameter to predict cycles to fatigue damage initiation in the matrix material next to a notch.
The modification incorporated the calculated thermal residual stress in the matrix, a r, and the

orthotropic stress concentration factor, Kt, as follows

AEef f = [(Kt£ma x + _r/Em)Kt(A£/2)] 112

where E m is the matrix modulus, ema x is the maximum applied strain and Ae is the applied
strain range.

To illustrate the importance of including the thermal residual stress term, the effective
strain parameter was calculated using the above equation with and without the residual stress
term for the data from ref. (12 and 13). The results are shown in Figure 8 as a function of

the number of cycles to observed crack initiation. The strain controlled matrix fatigue data

shown in Figure 1 was replotted in Figure 8 in terms of Aeeff.. Better agreement was found
between the effective strain parameter for the composite using the thermal residual stress
term 0and the matrix material baseline.

Fatigue Crack Growth from Notches

Bakuckas and Johnson (15) conducted analytical and experimental investigations of

the effect of fiber bridging on crack growth in center slit [0] 8 SCS-6/Ti-15-3 specimens.
Under constant amplitude loading the crack growth rate was found to decrease as the crack

length increased. The effect of fiber bridging reduced the crack driving force as the crack
grew. Since the crack in the composite is growing only in the matrix material, the crack
growth rate in the composite should correlate with the crack growth rate in the matrix
material alone if the crack driving force in the matrix, AK ., is properlv defined. Figure 9

• [ •

shows crack growth rate versus AK data for the T1-15-3 mamtadnal. The f{gure also shows the
composite data plotted without accounting for the fiber bridging. The AK does not
collapse the composite crack growth data to the Ti-15-3 data showing theaP_eed for a

definition of AKma t that includes fiber bridging.

Several fiber bridging models which combine a continuum fracture mechanics analysis
and a micromechanics analysis were investigated (16-18). In all of these models, the intact
fibers in the wake of the matrix crack are modeled using a continuous closure pressure.

Fiber/matrix debonding is assumed to occur as the crack progresses past each fiber. An
unknown constant shear stress x is assumed to act on the debonded fiber/matrix interface.

The fiber bridging models use x as a fitting parameter. The model proposed by McMeeking
(18) provided the most accurate predictions of the measured fiber/matrix debond length and
crack opening displacements for test data available, and was used to plot the da/dN data as
shown in Figure 9. The values of x used to fit the data are also shown in Figure 9.
Additionally, the values of x required to fit the da/dN data varied with applied load and crack
length. The value of x required to fit crack opening displacement data or fiber/matrix
debond length data were significantly different. If x were truly a material constant and all the
mechanics were properly modeled, x should not vary for a given material system. Further
work needs to be conducted to truly develop a predictive crack growth model for TMC's. In
particular, under TMF loading conditions, time- and temperature-dependent material
responses will need to be included in the modeling effort.
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SUlVllVlARY

This paper summarizes research conducted by the authors and their colleagues on notched
and unnotched fatigue of composite laminates made of a titanium alloy matrix reinforced with
silicon-carbide fibers (SCS-6/Ti-15-3). The subject research has established a good
fundamental understanding of fatigue damage initiation and propagation in continuous fiber
reinforced titanium matrix composites at both room and elevated temperatures. The causes
of initial damage on both the global and local levels are becoming well defined. Seemingly
insignificant factors, such as thermal residual stresses and interfacial strengths, play profound
roles in almost every aspect of the fatigue life, from initiation to fracture, and, thus, they
must not be overlooked. The time, temperature, material aging, and fiber/matrix interaction
effects are complex, and, in some cases, synergistic. This complex interaction is most
evident under thermomechanical fatigue, especially with complex mission simulations.

Progress is being made in analyzing such materials and loading condition as exemplified by
the VISCOPLY program. However there is a significant amount of work remaining before a

damage tolerance prediction methodology will be available for advanced TMC materials.
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